Neuromechanical response to spinal manipulation therapy: effects of a constant rate of force application
نویسندگان
چکیده
BACKGROUND Neuromechanical responses to spinal manipulation therapy (SMT) have been shown to be modulated through the variation of SMT biomechanical parameters: peak force, time to peak force, and preload force. Although rate of force application was modulated by the variation of these parameters, the assumption that neuromuscular responses are modulated by the rate of force application remains to be confirmed. Therefore, the purpose of the present study was to evaluate the effect of a constant rate of force application in neuromechanical responses to SMT in healthy adults. METHODS Four SMT force-time profiles presenting different time to peak force and peak force, but with a constant rate of force application were applied on 25 healthy participants' T7 transverse processes. Muscular responses were recorded through surface electromyography electrodes (T6 and T8 levels), while vertebral displacements were assessed through pasted kinematic markers on T6 to T8 spinous processes. Effects of SMT force-time profiles on neuromechanical responses were assessed using repeated-measures ANOVAs. RESULTS There was no main effect of SMT force-time profile modulation on muscular responses (ps > .05) except for the left T8 (F (3, 72) = 3.23, p = .03) and left T6 (F (3, 72) = 2.94, p = .04). Muscular responses were significantly lower for the lowest peak force condition than the highest (for T8) or second highest (for T6). Analysis showed that increasing the SMT peak force (and concomitantly time to peak force) led to a significant vertebral displacement increase for the contacted vertebra (F T7 (1, 17) = 354.80, p < .001) and both adjacent vertebras (F T6 (1, 12) = 104.71, p < .001 and F T8 (1, 19) = 468.68, p < .001). CONCLUSION This study showed that peak force modulation using constant rate of force application leads to similar neuromuscular responses. Coupled with previous investigations of SMT peak force and duration effects, the results suggest that neuromuscular responses to SMT are mostly influenced by the rate of force application, while peak force modulation yields changes in the vertebral displacement. Rate of force application should therefore be defined in future studies. Clinical implications of various SMT dosages in patients with spine related pain should also be investigated. TRIAL REGISTRATION ClinicalTrials.gov NCT02550132 . Registered 8 September 2015.
منابع مشابه
The effect of spinal manipulation impulse duration on spine neuromechanical responses.
INTRODUCTION Spinal manipulation therapy (SMT) is characterized by specific kinetic and kinematic parameters that can be modulated. The purpose of this study is to investigate fundamental aspects of SMT dose-physiological response relation in humans by varying SMT impulse duration. METHODS Twenty healthy adults were subjected to four different SMT force-time profiles delivered by a servo-cont...
متن کاملKinesio Taping Applied to Lumbar Muscles in Static Lumbar Flexion
Purpose: In approaching full trunk flexion (75%-80% of full flexion), myoelectric activity of lumbar erector spinae muscles is reduced or silenced; this response is known as flexion-relaxation phenomenon (FRP). FRP is a shift in load sharing and spinal stabilization from active structures (erector spinae muscles) to passive ligamentous and articular structures. Static lumbar flexi...
متن کاملModeling of Air Relative Humidity Effect on Adhesion Force in Manipulation of Nano-Particles and its Application in AFM
In this paper, the effect of air relative humidity and capillary force on contact geometry of surfaces based on JKR model by Atomic force microscopy was investigated in order to manipulate nano-particles. With transition from macro to nano-scale, the effect of surface forces becomes more significant in comparison with inertial force. Because contact mechanics models are based on surface energy ...
متن کاملEffective Parameters in Contact Mechanic for Micro/nano Particle Manipulation Based on Atomic Force Microscopy
The effect of geometry and material of the Micro/Nano particle on contact mechanic for manipulation was studied in this work based on atomic force microscopy. Hertz contact model simulation for EpH biological micro particle with spherical, cylindrical, and circular crowned roller shape was used to investigate the effect of geometry on contact simulation process in manipulation. Then, to val...
متن کاملEffects of Lidocaine on the Acute Hemodynamic Response to Electroconvulsive Therapy
ABSTRACT Electroconvulsive therapy (ECT) has been used widely to treat psychiatric disease. ECT under anesthesia is associated with hypertension and tachycardia. The cardiovascular effects of ECT were studied after per-treatment of 100 patients with lidocaine 1.5 mg/Kg (experimental group) and saline solution (control), using a double-blind, randomized clinical trial study. There were no sign...
متن کامل